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Theory and design of a free-electron maser with two-dimensional feedback driven
by a sheet electron beam
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The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimensional~2D! distrib-
uted feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron
beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open
and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one
is shown. A time-domain analysis of the excitation of an open 2D Bragg resonator by a sheet electron beam
demonstrates that a single-mode steady-state oscillation regime may be obtained for a sheet electron beam of
width 100–1000 wavelengths. Nevertheless, for a free-electron maser~FEM! with a closed 2D Bragg resona-
tor, a steady-state regime can also be realized if the beam width does not exceed 50–100 wavelengths. The
parameters for a FEM with a 2D planar Bragg resonator driven by a sheet electron beam based on the U-2
accelerator~INP RAS, Novosibirsk! are estimated and the project is described.@S1063-651X~99!04207-5#

PACS number~s!: 41.60.Cr, 52.75.Ms, 84.40.Fe, 84.40. Ik
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I. INTRODUCTION

In recent years many successful experiments have b
carried out on free electron masers~FEM’s!, which utilize
conventional Bragg resonators@1–5#. Such resonators ar
constructed by machining single periodic corrugations on
inner wall of the waveguide. However, in all previous e
periments the diameter of the microwave systems used~D!
does not exceed the wavelength of the radiation (l) by more
than a factorD/l'2 –4 and the output power produced w
not more than 50 MW. Further increase in the transve
dimensions of the 1D Bragg cavity would result in the loss
its selectivity.

However, for some applications it is attractive to achie
gigawatt power levels of millimeter wave radiation by utili
ing a large high-current sheet beam as the FEM driver.
use of such a beam makes it possible to increase the
beam power and, correspondingly, the microwave po
while still keeping the current and radiation density per u
transverse size constant. Indeed, at the U-2 accelerator~Bud-
ker Institute of Nuclear Physics, RAS, Novosibirsk! a micro-
second relativistic sheet electron beam with electron ene
of 1 MV, current per unit transverse size~linear current den-
sity! of 1 kA/cm, and transverse size up to 140 cm w
generated@6,7#. The power of this beam is tens of gigawa
and its energy is up to 0.5 MJ.

The main problem for the FEM driven by large size sh
beams is producing coherent radiation from different parts
the electron beam. To solve this problem, two-dimensio
~2D! distributed feedback has been recently propo
@8–10#. 2D distributed feedback may be realized in a Bra
resonator which consists of two metal plates with a dou
periodical corrugation. On this corrugation mutual scatter
PRE 601063-651X/99/60~1!/935~11!/$15.00
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of electromagnetic energy fluxes propagating in forwa
backward, and transverse directions relative to the direc
of electron beam propagation takes place. The additio
transverse electromagnetic energy fluxes should synchro
radiation from different parts of the large sheet electr
beam.

This paper is devoted to theoretical consideration of
novel scheme of the FEM with 2D Bragg resonators of p
nar geometry. In Sec. II the basic model and main equati
for electromagnetic~e.m.! waves scattering on the double
corrugated Bragg structure are presented. In Sec. III pro
ties of the open planar 2D Bragg resonator are considere
Sec. IV we investigate the excitation of such a resonator b
sheet relativistic electron beam and study of the build
oscillations. In Sec. V the influence of external reflections
the transverse e.m. fluxes on the FEM operation is studied
Sec. VI a project of 4-mm superpower FEM with a 2D plan
Bragg resonator driven by a 140 cm sheet relativistic el
tron beam is discussed.

II. MODEL AND BASIC EQUATIONS

The planar 2D Bragg resonator consists of two me
plates corrugated surface defined by

a5a1@cos~ h̄xx2h̄zz!1cos~ h̄xx1h̄zz!# ~1!

inside the rectangular area of widthl x , length l z, and sepa-
rated by distancea0 ~Fig. 1!. In Eq. ~1!, h̄x5h̄ sinw, h̄z

5h̄ cosw, h̄52p/d, d is the corrugation period,a1 is the
corrugation depth, and 2w is the angle between the gratin

vectorsh̄W @Fig. 1~c!#. Assumingh̄a1!1, we will describe the
935 ©1999 The American Physical Society
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936 PRE 60N. S. GINZBURGet al.
field within the resonator in the form of four coupled wave
A6 is propagating in6z directions and havings field varia-
tions over the transversey coordinate andB6 is propagating
in 6x directions and havingp field variations overy,

EW 5Re@~A1EW s
0e2hsz1A2EW s

0eihsz1B1EW p
0e2 ihpx

1B2EW p
0eihpx!eivt#. ~2!

HereA6(x,z) andB6(x,z) are slow functions of thex andz
coordinateshj5Av2/c22gj

2, gj5 j p/a0 is the transverse

~over they axis! wave number,j 50,1,2, . . . , EW s,p
0 (y) are

functions describing the spatial wave profile along they co-
ordinate, which coincide with one of the eigenmodes of
planar waveguide:

EW j
05 ixW0

v

c
sin~gjy! ~3a!

for TE modes, and

FIG. 1. Schematic diagram of FEL oscillator with an open~a!
and closed~b! planar 2D Bragg resonator driven by a sheet elect
beam. Diagram illustrating the scattering of the partial waves on

2D Bragg grating~c! (hW are the wave vectors of the partial wav

A6 andB6 , h̄W are the grating vectors!.
:

e

EW j
05zW0gj sin~gjy!2 iyW 0hj cos~gjy! ~3b!

for TM modes, including the TEM mode~which corresponds
to j 50).

The wave vectors of the partial waves satisfy the Bra
resonance condition when scattering on the grating:

hW s2hW p5h̄W . ~4!

If the grating vectors are perpendicular to each other (w

5p/2, h̄x5h̄z) all the partial waves will possess the sam
longitudinal wave numbers and the same numbers of tra
verse variations (s[p), otherwise the wavesA6 and B6

have the different transverse variation indices.
Substituting Eq.~2! into the Helmholtz equation with a

periodic boundary condition imposed at the corrugated p
surface~1! and averaging, we obtain the following set
equations for the slow amplitudesA6 ,B6 :

e7 iLsz
]A6

]z
7 ias~B1e2 iLpx1B2e1 iLpx!50,

e7 iLpx
]B6

]x
7 iap~A1e2 iLsz!1A2e1 iLsz)50. ~5!

The wave coupling parameteras,p @11,12#, when only one
metal plate is corrugated, can be presented as

as,p5
va1

8pNs,p
~HW stHW pr1EW snEW pn!, ~6!

whereHW t ,En are the tangential component of the magne
field and the normal component of the electric field at
unperturbed surface of the planar waveguide, respective

Nj5U c

2pE EW' jHW ' jdyU5« jhjva0

4p

is the wave norm (« j52 for a TEM mode and« j51 for
other modes!, and Ls5hs2h̄z ,Lp5hp2h̄x are the spatial
mismatches from Bragg resonance.

The conditionsLs,p50 determine the Bragg frequenc
v0 ~i.e., the frequency of the precise Bragg resonance!. For
given geometric parameters of the resonator including
corrugation periodd and the distance between the platesa0,
this frequency satisfies the relation

v0

c
5Ah̄2 cos2 w1gs

25Ah̄2 sin2 w1gp
2. ~7!

The frequencies of eigenmodes in the resonator may
shifted from the Bragg frequency. Assumingv5v0(1
1V), where uVu!1, and taking into account Eq.~7! we
have for the spatial mismatches

Ls,p5ns,pV,

wherens5v0
2/h̄c2 cosw and np5v0

2/h̄c2 sinw. Introducing
new variables

A65ANsnsA6e7 iLsz, B65ANpnpB6e7 iLpx,

n
e
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PRE 60 937THEORY AND DESIGN OF A FREE-ELECTRON MASER . . .
Z5zAns /np5zAtgw, X5xAnp /ns5xActgw,

d5VAnsnp

it is possible to simplify Eq.~5! and reduce it to the form

]A6

]Z
7 idA66 ia~B11B2!50,

~8!

]B6

]X
7 idB66 ia~A11A2!50.

The wave coupling parameter in Eqs.~8!, a5asANs /Np

5apANp /Ns, may be rewritten using Eqs.~6! and ~3! as

a5
a1Ahshp

2a0A«s«p

~9a!

for mutual scattering of the ‘‘s’’ wave of TM type into the
‘‘ p’’ wave of TM type and

a5
va1gs

2a0cAhshpA«p

~9b!

for mutual scattering of the ‘‘s’’ wave of TE type into the
‘‘ p’’ wave of TM type. As it follows from Eq.~6!, the cou-
pling of two waves of TE type on the Bragg structure
negligibly small~in the approximation proportional toh̄a1)
because the normal component of the electric fieldEn tends
to zero on the corrugated surface and the magnetic field
tors HW t are perpendicular to each other.

Note that the TM and TEM waves for whichEW iyW 0 can be
used in FEM’s with guide magnetic fields and cyclotron a
toresonance masers~CARM’s!. For planar FEM’s without
guide magnetic fields only TE waves can be used as ope
ing ones, because for these wavesEW ixW0, which makes inter-
action possible with the electrons oscillating along thex co-
ordinate. In such a case the 2D feedback may be provide
scattering of the TE (A6) and TM (B6) waves.

To obtain a high Doppler up-shift for all the types of th
devices mentioned above, the phase velocity of the w
interacting with the electrons~let us further assume that th
is a partial waveA1) should be close to the speed of ligh
Hence, this wave should propagate at a small angle w
respect to the electron-beam motion direction and should
one of the lowest modes of the waveguide. Meanwhile,
partial wavesB6 , which are responsible for the transver
energy fluxes over thex coordinate, can be chosen by prop
gating at a large angle to the axis and having smaller gr
velocities. Accordingly to Eq.~9b!, decreasing the group ve
locity of B6 , one can increase the distance between pla
a0 keeping the wave coupling coefficient a constant. T
way it is possible for TM waves to retain the selective pro
erties of the resonator while increasing the transverse siz
the resonator in they direction~compare with@13#!. It should
be noted that the limitation along this direction (y direction!
is the same as for other microwave oscillators, which
traditional 1D Bragg resonators.
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III. EIGENMODES OF THE OPEN
2D BRAGG RESONATOR

Let us find the frequencies,Q factors, and spatial struc
tures for eigenmodes of the open 2D Bragg resonator@Fig.
1~a!#. Assuming that fluxes of electromagnetic energy fro
outside are absent and that the partial waves do not re
from the end of the corrugated surface, the boundary co
tions for Eq.~8! can be written as

A1S X,2
Lz

2 D50, A2S X,
Lz

2 D50, ~10a!

B1S 2
Lx

2
,ZD50, B2S Lx

2
,ZD50, ~10b!

whereLz5 l zAtgw andLx5 l xActgw.
It is useful to introduce new variables$A1(X,Z)

1A2(X,Z)% and $B1(X,Z)1B2(X,Z)% to reduce Eqs.~8!
to the following form:

]2

]Z2
$A11A2%1d2$A11A2%522ad$B11B2%,

~11a!

]2

]X2
$B11B2%1d2$B11B2%522ad$A11A2%

~11b!

with the boundary conditions

]

]Z
$A11A2%6 id$A11A2%uZ56Lz/2

50,

]

]X
$B11B2%6 id$B11B2%uX56Lx/250. ~12!

Solutions of Eqs.~11! and~12! may be found by using sepa
ration of variables:

A1~X,Z!1A2~X,Z!5C1f x~X! f z~Z!,

~13!

B1~X,Z!1B2~X,Z!5C2f x~X! f z~Z!,

whereC1,2 are arbitrary constants andf x,z are the eigenfunc-
tions of the operatorsTx,z defined as

Tj f ~j!5
d2

dj2
f ~j!1d2f ~j!. ~14!

The eigenfunctionf j(j) of the operatorTj satisfying the
equationTj f j(j)5gj f j(j) and the boundary conditions

d

dj
f j~j!6 id f j~j!uj56Lj/250 ~15!

can be written in the following form:
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938 PRE 60N. S. GINZBURGet al.
f j~j!5
Ad1lj

Ad2lj

@~d1lj!exp~ iljj!exp~ iljLj!

2~d2lj!exp~2 iljj!# , ~16!

wherelj5Ad22gj andgj is the eigennumber of the opera
tor Tj and is determined by the characteristic equation

exp~2iljLj!5
~d2lj!

2

~d1lj!
2

. ~17!

It should be noted that it is possible to prove that the se
the eigenfunctionsf j is complete.

Having substituted Eq.~13! into Eq. ~11!, we obtain that
eigennumbersgx ,gz of the operatorsTx andTz are satisfying
the relation

gzgx54a2d2, ~18!

and the characteristic equations have a form similar to
~17!:

exp~2ilzLz!5
~d2lz!

2

~d1lz!
2

,

~19!

exp~2ilxLx!5
~d2lx!

2

~d1lx!
2

,

wherelx,z5Ad22gx,z. The joint solution of Eqs.~18! and
~19! determines the spectrum of the eigenfrequencies and
Q factors of the eigenmodes of the open 2D Bragg resona

The spatial structures of the partial wavesA6 ,B6 can be
found by integrating Eq.~8! considering Eq.~13! and taking
into account the boundary conditions~10!. This leads to the
following solution for the amplitudes of the partial wave
A6 ,B6 :

A652ia~d6lz!expF6 ilz

Lz

2 GsinFlzS Z6
Lz

2 D G f x~X!,

~20a!

B652ia~d6lx!expF6 ilx

Lx

2 GsinFlxS X6
Lx

2 D G f z~Z!.

~20b!

Analysis of Eqs.~18! and ~19! shows that the spectrum
contains highQ-factor modes

Q5
11Re~V!

2 Im~V!
'

Ansnp

2 Im~d!
@1

under conditions of strong wave couplingaLx,z@1. The
eigenfrequencies of the modes are situated near the B
resonanced'0 as well as neard'62a ~Fig. 2! and solu-
tions for them are given by the relations

lz5
pn

Lz
1 i

pm

aLzLx
, lx5

pm

Lx
1 i

pn

aLzLx
, ~21a!
f

q.

he
r.

gg

d52
p2mn

2aLzLx
2 i

p2

2a2LzLx
S n2

Lz
1

m2

Lx
D ~21b!

whend'0, and

lz5
pn

Lz
2 is

pn

aLz
2

, lx5
pm

Lx
2 is

pm

aLx
2

, ~22a!

d5F2a1
p2

4a S n2

Lz
2

1
m2

Lx
2 D Gs2 i

p2

2a2 S n2

Lz
3

1
m2

Lx
3 D ~22b!

whend'62a. In Eqs.~21! and~22!, n50,61,62, . . . are
the longitudinal~over thez axis! andm50,61,62, . . . are
the transverse~over thex coordinate! indices of the modes
s5615sgn(mn).

According to Eqs.~21! and ~22!, high selectivity over
both the longitudinal~n! and the transverse~m! indices takes
place because of output radiation~due to diffraction! not
only in the longitudinal6z directions~similar to 1D Bragg
resonators!, but additionally in the transverse (6x) direc-
tions. TheQ factor will be maximal for the lowest mode
with indices n50,m51 and n51,m50 ~Fig. 2!. These
modes have the same eigenfrequency@Re(d)50#, and when
Lx5Lz they have the sameQ factor also. Figure 3 gives the
spatial structure of the partial wavesA1 and B2 for the
eigenmoden51,m50 ~the structure of theA2 wave is iden-
tical to the structure of theA1 wave and theB2 is bilaterally
symmetrical toB1). For this mode the field amplitude of th
A1 wave does not depend on the transversex coordinate,
which will provide equal energy extraction from all parts
the large electron beam. It should also be noted that
maximal amplitude of theA6 waves is much larger than th
maximal amplitude ofB6 : A6

max/B6
max5aLz . For the mode

n50,m51, the spatial structures of the partial wavesA6

andB6 are identical to the structure of theB6 andA6 waves
for the moden51,m50, respectively, if we mutually ex-
change thez and x coordinates. For this modeA6

max/B6
max

51/aLx and therefore this mode has a fairly low amplitu
of the waveA1 . As A1 is assumed to be the only partia
wave resonant with the electrons, the moden51,m50 will
not be readily excited by the electron beam.

FIG. 2. The eigenmode spectrum (Q factors of the eigenmode
vs their eigenfrequencies! of the open planar 2D Bragg resonato
Lx5Lz .
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IV. BUILD-UP OF OSCILLATIONS IN A FEL
WITH A 2D BRAGG RESONATOR

Let us investigate excitation of an open 2D Bragg reso
tor by a sheet relativistic electron beam. Suppose that e
trons oscillate either in a periodic wiggler field~FEM! or in
a uniform axial magnetic field~CARM!. Let us assume tha

FIG. 3. Spatial structure of fundamental moden51,m50 ~with
the highestQ factor! for the open planar 2D Bragg resonat
(aLx5aLz55): ~a! normalized partial waveA1 , ~b! normalized
partial waveB1 , ~c! normalized partial waveA0.
-
c-

the sheet electron beam is thin and moving near a wig
axis and let us neglect the inhomogeneities in the undul
and RF fields as well as nonuniformities of the beam, init
velocity spread, etc. As we assumed above, only theA1

wave is resonant with the electron beam and the resona
condition can be written in the form

v2hn i5V, ~23!

where n i5b ic is the axial electron velocity andV is the
frequency of electron oscillations~for FEM, V5Vb
52pn i /dw is the frequency of bounce oscillation in a wig
gler of perioddw ; for the CARM,V5VH5eH0 /gmc is the
gyrofrequency of rotation in a uniform axial fieldH0 andg
is the relativistic mass factor!. As a result, the resonant for
ward waveA1 may be amplified by the electron beam. O
the grating it scatters into wavesB6 , which propagate in the
transverse directions and synchronize radiation from the
ferent parts of the electron beam~after further transformation
into the waveA1). Simultaneously, the wavesB6 scatter
into the backward waveA2 , thus completing the feedbac
cycle.

Let us suggest for simplicity here that the angle betwe
the grating vectors@Fig. 1~c!# is equal top/2, which corre-
sponds to the case when all partial waves have the s
transverse index and the same group velocitiesbgr . In this
case the excitation of a 2D Bragg resonator by the elec
beam and the build-up of oscillations can be described by
following system of equations@10,14#:

S ]

]Z
1

1

bgr

]

]t D Â11 i â~B̂11B̂2!5J,

J5
1

pE0

2p

e2 iudu0 , ~24a!

S 2
]

]Z
1

1

bgr

]

]t D Â21 i â~B̂11B̂2!50, ~24b!

S 6
]

]X
1

1

bgr

]

]t D B̂61 i â~Â11Â2!50, ~24c!

S ]

]Z
1

1

b i

]

]t D 2

u5Re~Â1ej u!. ~24d!

The boundary conditions for the partial waves in Eqs.~24!
keep the form~10! and the boundary conditions for the mo
noenergetic, unmodulated electron beam take the form

uuZ5Lz/2
5u0P@0,2p!, S ]

]Z
1

1

b i

]

]t D uU
Z52Lz/2

5D.

~25!

Here we have used the following dimensionless variab
and parameters:

Z5~v0 /c!zC, X5~v0 /c!xC,

t5v0tC, â5ac/v0C,

~Â6 ,B̂6!5ekm~A6 ,B6!/mcv0g0C2,
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D5~v02hn i2V!/v0C

is the initial mismatch from resonance,u5v0t2hz
2*V dt is the electron phase with respect to the reson
wave,u0 is the initial electron phase,

C5S eÎ0

mc3

l2k2m

8pg0a0
D 1/3

is the gain parameter,k'b'/2b i is the parameter describin
coupling between the wave and electrons,m is the inertial
bunching parameter (m'g0

22 for a FEM andm'12bph
22

for a CARM!, Î 0 is the unperturbed electron current per u
transverse size,bph is the phase velocity of the synchrono
wave, andLx,z5 l x,zCv0 /c. The electron efficiency is given
by the relations

h5
C

m~12g0
21!

ĥ,

ĥ5
1

2pLx
E

2Lx/2

1Lx/2

dXE
0

2pS ]u

]Z
2D D U

Z51Lx/2

du0 . ~26!

Time dependencies of the efficiency in the range of
parameters where the establishment of a stationary regim
oscillation takes place are presented in Fig. 4~a!. Note that in
the numerical simulations we assumedb i5bgr . In the sta-
tionary regime the spatial structures of the partial wavesA6

and B6 are close to the structures of the correspond
waves for the highest-Q ~fundamental! moden51,m50 of
the cold resonator~compare Fig. 5 and Fig. 3!. As it is seen
from the spectrum of output radiationSV5*0

1`Â1(t,Z
5Lz /2)eiVt dt, the oscillation frequency coincides with th
frequency of this mode, i.e., with the Bragg frequency@Fig.
4~b!#. The self-excitation condition~see the Appendix for
details! for this mode may be presented in the form

P5â2LxLz
4>250, DLz'p. ~27!

It is important to note that the transverse distribution of
amplitude of the resonant waveA1 does not depend on th
transverse coordinatex, thus providing equal energy extrac
tion for all parts of the electron beam.

The principal problem for the scheme of FEM consider
here is the question regarding the maximum transverse w
of the system (l x) under which the regime of spatial synchr
nization of radiation from different parts of the electro
beam can be realized. From the set of Eqs.~24! it may be
found that in the steady-state generation regime (]/]t50),
when the fundamental moden51,m50 is excited, the de-
pendencies of wavesB6 on the transverse coordinate may
presented as

B̂15âX~Â11Â2!, B̂25â~Lx2X!~Â11Â2!.
~28!

This allows us to reduce Eqs.~24! to the form
nt

t

e
of

g

e

d
th

dÂ1

dZ
1 i â2LX~Â11Â2!5

1

pE0

2p

e2 iu du0 ,

dÂ2

dZ
2 i â2Lx~Â11Â2!50, ~29!

d2u

dZ2
5Re~Â1eiu!.

Therefore, if the system length is constant,Lz5const, the
distribution of the waves along the longitudinal coordinate
well as the efficiency do not change when the condit
â2Lx5const is satisfied. Such a scaling gives us the po
bility of increasing the width of the interaction spaceLx
while simultaneously decreasing the coupling parameter~for
example, decreasing the corrugation deptha1). Computer
simulation of the nonstationary equations~24! confirms this
conclusion. IfLz<5, the synchronization regime is stable
least up toLx<30 ~that for a gain parameterC'531023

FIG. 4. Establishment of the stationary regime of oscillations
a FEL with the open planar 2D Bragg resonator:~a! Dependence of

the normalized efficiency on time whenLz54, D521.82, â2Lx

51.25, and~a! 2Lx50.8, â51.25; ~b! 2Lx53.2, â50.625;~c!

2Lx512.8, â50.315;~d! 2Lx528.8, â50.208.~b! Spectrum of
output radiation in the stationary regime of oscillation whenLx

512.8, â50.315.
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corresponds toLx /l'103). However, the transient time in
creases with the increase in the system width@Fig. 4~a!#.

It should be noted that a stable single-frequency osc
tion regime corresponds to excitation of the fundamen
wave realized when the threshold conditionP>250 is mod-

FIG. 5. Spatial structures of the partial waves’ amplitudes in
stationary regime of oscillations whenLz54, D521.82, Lx

512.8, â50.315. ~a! Normalized partial waveA1 , ~b! normal-
ized partial waveB1 , ~c! normalized partial waveA2 .
-
l

erately exceeded. Increasing this parameter, an excitatio
other modes was observed. In particular, an excitation of
eigenmoden5m51 was obtained when the conditions

â2Lx
2Lz

4/~Lx1Lz!>500, ~D62â !Lz'p ~30!

were satisfied. WhenP greatly exceeds the threshold, mult
frequency self-modulation regimes of generation were re
ized. In this case the spatial structures of output radiat
exhibited periodical or chaotical variations with time.

V. INFLUENCE OF SIDE REFLECTIONS
ON THE SELECTIVE PROPERTIES

OF A 2D BRAGG RESONATOR

As was shown in the preceding section, a 2D Bragg re
nator open in the transverse direction displays practically
limited possibilities for increasing the system’s transve
size. However, in practice it is rather difficult to realize e
traction of energy from all directions especially in th
scheme of FEM’s where a guide magnetic field produced
a solenoid is employed. It is possible to suggest several
lutions how to provide a singly directed output of radiatio
One of them is to use additional reflectors situated outs
the interaction space in order to turn the transverse ene
fluxes into the longitudinal direction. However, it is muc
more simple to restrict the 2D Bragg resonator by two me
mirrors on the transverse edges@Fig. 1~b!#. Such a closed
system in the transverse directions will possess less sele
ity than the original open one, while under certain conditio
a single mode operation regime can be achieved. Thus
this section we consider the influence of side reflections
the operability of a FEM with two-dimensional feedback.

In the case of arbitrary reflections from the transve
edge of the resonator, the boundary conditions for Eq.~8!
remain the same@i.e., Eq. ~10a!# for the longitudinal e.m.
fluxes, but for the transverse e.m. fluxes they take the fo

B1S 2
Lx

2
,ZD5RB2S 2

Lx

2
,ZD ,

B2S Lx

2
,ZD5RB1S Lx

2
,ZD , ~31!

whereR is the reflection coefficient. The solution of Eq.~8!
with the boundary conditions~10a! and ~31! may be found
by separation of variables and using new variables in
form of Eq. ~13!. In this case the functionsf̃ x are the eigen-
functions of the operatorT̃x given by the same equation~14!
but with the modified boundary conditions

S 11R

12RD ]

]X
$B11B2%6 id$B11B2%U

X56Lx /2

50.

~32!

A new set of the eigennumbersd,gz ,g̃x @where gz is the
eigennumber of the operatorTz given by Eqs.~14! and ~15!

and g̃x is the eigennumber of the operatorT̃x given by Eqs.
~14! and ~32!# should be yielded by the joint solution of th
characteristic equations

e
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exp~2ilzLz!5
~d2lz!

2

~d1lz!
2

, ~33a!

exp~2ilxLx!5
@~12R!d2~11R!lx#

2

@~12R!d1~11R!lx#
2

, ~33b!

where lz5Ad22gz, lx5Ad22g̃x, and the relation be-
tween the eigennumbersgzg̃x54a2d2 keeps the form simi-
lar to Eq.~18!. Note that these equations reduce to the fo
of Eqs. ~18! and ~19! for the case of an open resonator (R
50).

In the case of a resonator restricted by ideal metal mirr
on the transverse sides (R521) the characteristic equatio
~33b! takes the form

exp~2ilxLx!51. ~34!

The joint solution of Eqs.~18!, ~33a!, and~34! presents three
groups of eigenmodes which are situated neard'0, d'
62a, and d'pm/Lx ~Fig. 6!. Under the assumption o
strong wave coupling they are given by the relations

d5
p2nm

2aLxLz
2 i

p2m2

2a2LzLx
2

~35a!

at d'0,

d56F2a1
p2

4a S n2

Lz
2

1
m2

Lx
2 D G2 i

p2n2

2a2Lz
3

~35b!

at d'62a,

d5
pm

Lx
S 12

2a2Lz
2

p2n2 D 2 i
2a2Lz

3m2

p2n4Lx
2

, ~35c!

at d'pm/Lx , where m and n are the transverse and th
longitudinal indices of the modes, respectively. The eig
functions of the operatorT̃x for R521 have the form

f̃ x~X!5expS 2 ilx

Lx

2 D sinFlxS X1
Lx

2 D G . ~36!

FIG. 6. The spectrum of eigenfrequencies andQ factors of the
modes for closed~side reflectionR521) planar 2D Bragg resona
tor: Lx5Lz .
rs

-

The relation~36! shows that the eigenmode at the fr
quency of exact Bragg resonanced[0 is not present in the
spectrum of the closed resonator. At the same time a new
of eigenmodes having frequenciesd'pm/Lx arises com-
pared with those of the open resonator. Under the zero w
coupling conditiona50 on the Bragg gratings~zero corru-
gation depth! these eigenmodes are reduced to the eig
modes of a two-mirror resonator formed by the metal s
walls. For this set of modes an increase of the wave coup
(a) results in an increase of the scattering of the transve
propagating waves into the longitudinal propagating on
and increases diffraction losses. Thus, theQ factors of these
modes decrease with the increase ofa ~in contrast to the
behavior of modes located neard'0 andd'62a, which
originate from scattering of the waves on the Bragg str
ture!. At aÞ0, theQ factors of the eigenmodes from all se
of modes are comparable to each other and, as a result
selective properties of the cold resonator are impaired.

For an arbitraryR the evolution of the resonator’s spe
trum versus the reflection coefficient is shown in Fig. 7. T
spectrum is obtained from simulation using a time-dom
code which solves Eqs.~24! with boundary conditions~10a!
and ~31! under the assumption of absence of the electr
~i.e., zero beam currentJ50). Some arbitrary initial field
distribution was assumed att50 for this code and the mod
spectrum was plotted fort significantly exceeding the time
for the waves to complete the feedback cycle of the reson

FIG. 7. Evolution of the mode spectrum of the planar 2D Bra
resonator (aLx5aLz59) vs side reflection coefficientR.
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~i.e., t>103 for parameters presented in Fig. 7!, when the
mode spectrum practically has no dependence on the in
field distribution. This method allows one to separate
highestQ-factor modes presented in the spectrum. Figur
shows that foruRu<0.2 the spectrum of eigenfrequencies
close to the spectrum of the open resonator. The reson
retains high selectivity over the longitudinal and the tra
verse coordinates with the maximumQ factor belonging to
the eigenmode at the Bragg resonance frequency. TheQ fac-
tor of this mode decreases with an increase of the reflec
coefficient and at 0.3,uRu,0.8 the eigenmodes with on
field variation over both the transverse and longitudinal
ordinates (umu5unu51) located atd'62a have the highes
Q factor. At R'21, there are a few sets of eigenmodes
the spectrum of the cold resonator with theQ factors at the
same level.

To study the excitation of the resonator by the elect
beam forRÞ0, the system of Eq.~24! with the boundary
conditions~10a!, ~25!, and ~31! was solved. The numerica
simulations of oscillation build-up in the resonator wi
small side reflections (uRu<0.3) demonstrate the existenc
of a broad range of the system’s parameters where the sin
mode operation regime is established practically for a
width of the resonator. In this case, similar to the open re
nator, the fundamental mode at the Bragg frequency w
approximately constant transverse distribution is excited
the beam.

For high reflectivity from the transverse side walls (R'
21), the single-mode operation regime is changed to
self-modulation regime for large widths of the resonatorLx
>10. These regimes are accompanied by excitation of s
eral modes of the resonator, of which beating takes pl
@Fig. 8~a!#. However, forLx<7 the single-mode operatin
regime may be realized even in the closed resonator w
R521 @Fig. 8~b!#. The establishment of the single-mod
operating regime is caused by electronic selection of the
ferent modes@15,16# ~as opposed to electrodynamical mo
selection in the open 2D Bragg resonator!. The field structure
of the partial wave resonant with the electron beam in
steady-state operating regime is now dependent on thex co-
ordinate but it still has the convenient amplitude field dis
bution for interaction with the electron beam~Fig. 9!. It
should be noted that even small RF losses for the transv
e.m. fluxes~i.e., decrease in reflection from the transve
side walls! stabilize the single-mode operation of the FE
~Fig. 10!.

VI. DESIGN OF A HIGH-POWER FEM DRIVEN
BY A SHEET ELECTRON BEAM

Experimental study of a powerful millimeter waveleng
FEM driven by a sheet electron beam has been carried
using the high-current microsecond accelerator U-2~INP
RAS, Novosibirsk!. In recent experiments a scaled dow
sheet electron beam with particle energy of 1 MeV, be
current of 4 kA, and cross section of 0.3 cm312 cm was
used. A conventional planar two-mirror Bragg resonator p
vided selective 1D distributed feedback at the 4 mm ope
ing wavelength. As a result of the experiments, an out
power of 200 MW in a microwave pulse of 1ms duration
was obtained@17#. Thus, even at the present stage, a rec
ial
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energy per pulse for millimeter wavelength generators of 2
J has been achieved.

Further increases in the radiation power can be achie
by using the full-scale beams with cross section 0
cm3140 cm~energy content about 80 kJ! and 3 cm3140 cm
~energy content up to 0.4 MJ! which are generated by th
U-2 accelerator. The theoretical analysis described in
paper has demonstrated the potential of 2D Bragg resona
in obtaining high-power spatially coherent radiation fro
such a wide beam.

Let us consider here an FEM project using the 2D Bra
resonators to generate radiation of wavelengthl54 mm on
the basis of the U-2 accelerator~1 MV/200 A/cm/5ms/cross
section 0.5 cm3140 cm!. Let the wiggler be of 4 cm period
and the amplitude of the wiggler field be up to 0.1 T.
allows one to produce an oscillatory electron velocityb'

'0.2–0.3 and parameterm'g22'0.1 at an axial guide field
strength of about 1 T@17#. In this case, when the distanc
between cavity platesa051 cm, the gain parameter isC
'0.006. For these parameters the dimensionless transv
size Lx'12 @curve 3 in Fig. 4~a!# corresponds to a beam
width of about 140 cm. Thus, following computer simul
tion, the use of an open 2D Bragg resonator with a corru
tion of period 3 mm and depth 0.3 mm would make it po
sible to realize a single-mode-operation regime in the FE
It will provide spatially coherent radiation when the ove

FIG. 8. Oscillation build-up in a FEL with the closed planar 2
Bragg resonator:~a! Time dependence of the normalized efficien

for Lz53, R520.99, D522.3, and 12Lx510,â50.4; 22Lx

57,â50.5. ~b! Spectrum of output radiation in the stationary r
gime of oscillation~solid line! for Lz53, Lx57, R520.99, D

522.3, â50.5, and spectrum of eigenmodes with the highesQ
factor of the ‘‘cold’’ resonator with the same geometrical para
eters~dashed line!.
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sized parameterl x /l'350. The transit time will be abou
200 ns. With the efficiency of 15% the radiation power
calculated to be 4 GW. For a full-scale beam with cro
section 3 cm3140 cm and beam current 1 kA/cm the ga
parameter is the same when the distance between the
Bragg cavity platesa055 cm. Thus, all dimensionless pa
rameters stay the same and from curve 3 in Fig. 4~a! it may
be estimated for this experiment~do not take into account al

FIG. 9. Spatial structures of the partial waves amplitudes in
stationary regime of oscillations whenLz53, Lx57, D5

22.3, â50.5. ~a! Normalized partial waveA1 , ~b! normalized
partial waveB1 , ~c! normalized partial waveA2 .
s

2D

the inhomogeneity in the e-beam and fields! that output
power can be as great as 20 GW.

At the same time, for a sheet beam of width aboutl x /l
'100 the simpler transversely closed resonator scheme
be used. The dimensionless transverse sizeLx'7 @curve 2 in
Fig. 8~a!# corresponds to a beam width of 80 cm for FE
parameters discussed above. Following computer sim
tions, the FEM with a side closed resonator driven by
electron beam of width about 50–80 cm will be able to o
erate at a single frequency around 75 GHz. Considering
same operating parameters as for the open system, the
ciency of the FEM can be 10%. The transit time is expec
to be shorter than 100 ns and the radiation power is ca
lated to be up to 1–2 GW for a beam of current 200 A/c
and approximately 5–7 GW for a beam of current 1 kA/c
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APPENDIX

Presented below is the self-excitation condition for a p
nar open 2D Bragg resonator. It may be obtained from
power balance equation

vW

Q
5hI bUB , ~A1!

which is valid in a stationary regime of oscillation. The rig
side of formula~A1! represents power radiated by the ele
tron beam of currentI b and voltageUb , and the left side
corresponds to the diffraction losses from the resonator
the mode with the frequencyv, Q factorQ, and e.m. energy
storageW51/4p* uEW 2udV.

Electron efficiency near a threshold of generation~i.e., in
a small signal regime! may be found from equations of pa
ticle motion ~24e! after linearization and implementing th
sequential approximations method~see@18# for details!:

e

FIG. 10. Time dependence of the normalized efficiency
FEL’s with planar 2D Bragg resonator for different values of t

side reflectionR (Lz53, Lx57, D522.3, â50.5).
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ĥst5
1

4Lx
E

2 l x/2

l x/2

dX
d

dD U E
2Lz/2

Lz/2

A1~X,Z!eiDZ dZU2

,

~A2!

whereA1(X,Z) is the spatial structure of the partial wav
which is in synchronism with the electrons. Substituting
Eq. ~A2! the structure of the partial wave~20a! for the high-
est Q moden51,m50, we come to the following formula
for electron efficiency in the small signal regime:

h̃st5p2A10
2 Lz

3 d

dC F 11cosC

~C22p2!2G , ~A3!
in

n-

ys

d

-
E

.

-
l

99

m

ni-
A

where C5DLz is the transit angle andA10 is the partial
wave amplitude. The maximum efficiency

ĥsl
max'0.04A10

2 Lz
3 ~A4!

is reached atC'p.
For the e.m. energy stored in the resonator, which is

sociated with excitation of the fundamental mode, from t
expressions~2! and~20! we haveW'(1/p)A10

2 a0l xl z . As a
result, from Eq.~A1! using relation~21! for the fundamental
modeQ factor and Eqs.~26! and~A4! for electron efficiency
and going to the dimensionless variables, we obtain the c
dition ~27!. The self-excitation condition~30! for other
modes can be obtained using similar procedures.
b,
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n
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